Image Retrieval with Structured Object Queries Using Latent Ranking SVM
نویسندگان
چکیده
We consider image retrieval with structured object queries – queries that specify the objects that should be present in the scene, and their spatial relations. An example of such queries is “car on the road”. Existing image retrieval systems typically consider queries consisting of object classes (i.e. keywords). They train a separate classifier for each object class and combine the output heuristically. In contrast, we develop a learning framework to jointly consider object classes and their relations. Our method considers not only the objects in the query (“car” and “road” in the above example), but also related object categories can be useful for retrieval. Since we do not have ground-truth labeling of object bounding boxes on the test image, we represent them as latent variables in our model. Our learning method is an extension of the ranking SVM with latent variables, which we call latent ranking SVM. We demonstrate image retrieval and ranking results on a dataset with more than a hundred of object classes.
منابع مشابه
A Latent Variable Ranking Model for Content-Based Retrieval
Since their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of u...
متن کاملBranch&Rank: Non-Linear Object Detection
Branch&rank is an object detection scheme that overcomes the inherent limitation of branch&bound: this method works with arbitrary (classifier) functions whereas tight bounds exist only for simple functions. Objects are usually detected with less than 100 classifier evaluation, which paves the way for using strong (and thus costly) classifiers: We utilize non-linear SVMs with RBF-χ2 kernels wit...
متن کاملEnabling Data Retrieval : by Ranking and Beyond
The ubiquitous usage of databases for managing structured data, compounded with the expanded reach of the Internet to end users, has brought forward new scenarios of data retrieval. Users often want to express non-traditional fuzzy queries with soft criteria, in contrast to Boolean queries, and to explore what choices are available in databases and how they match the query criteria. Conventiona...
متن کاملTechnical Report: Learning to Rank using High-Order Information
The problem of ranking a set of visual samples according to their relevance to a query plays an important role in computer vision. The traditional approach for ranking is to train a binary classifier such as a support vector machine (svm). Binary classifiers suffer from two main deficiencies: (i) they do not optimize a ranking-based loss function, for example, the average precision (ap) loss; a...
متن کاملLearning to Rank Using High-Order Information
The problem of ranking a set of visual samples according to their relevance to a query plays an important role in computer vision. The traditional approach for ranking is to train a binary classifier such as a support vector machine (svm). Binary classifiers suffer from two main deficiencies: (i) they do not optimize a ranking-based loss function, for example, the average precision (ap) loss; a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012